Electrochemical sensors for microbial activities in benthic sediments: a sentry for lacustrine P biogeochemistry

Release of phosphate-P immobilized in benthic sediments poses a remnant threat to induce harmful algal blooms (HAB) despite adequate management of external loads of phosphate. This process, referred to as internal loading of P, is induced by microbially mediated alternations of sediment and porewater chemistry and bacteria that “breath” iron are mostly responsible for controlling the release of P from sediments. We have developed an electrochemical split-chamber zero resistance ammetry (SC-ZRA) technique that we can use to detect microbiological activities.

Continue reading


Rheological Dynamics of Liquid Crystals under Thermal Gradients

Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production.

Continue reading


Productive Uncertainty in a Laboratory Setting (PULSe): Engaging Students with Autism Spectrum Disorders (ASD) in Scientific Research

Peer mentors/research assistants are sought for the PULSe program. Those with ASD have particular modes of thinking and learning that is outside the realm of standard pedagogical practices. In the proper environment, these modes may help those with ASD to flourish. However, they are normally disadvantaged in basic learning environments. Academia is not wholly equipped to instill and help develop the necessary tools for ASD students to effectively function in society. Our aim is to bridge the learning gap.

Continue reading


Rheological Dynamics of Cellulose Nanocrystal Suspensions under Thermal Gradients

Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production. Translational and orientational motions evolve as a molecular compensation mechanism.

Continue reading


Microfluidic Reactor Design for Helicene Synthesis

Helicenes are polycyclic aromatic compounds which are formed by ortho-fused aromatic rings that generate a non-planar, screw-shaped, three-dimensional structure that is inherently chiral and spring-like. The helical topology significantly contributes to the emergent properties of helicenes and has been garnering interest in the fields of nanotechnology, macromolecular and materials science.

Continue reading


Biomass-based Fillers for Polymers

Pyrolyzed (process of low or no oxygen thermal decomposition –carbonization- to convert biomass into clean and renewable carbon products) biomass obtained from agricultural products such as soybean hulls, sorghum etc., is used as a renewable, low cost and eco-friendly material which has large potential for reinforcement or functionality-inducing (such as electrical, thermal conductivity) filler for polymeric materials.

Continue reading


Photolytically degradable, hydrolytically degradable, and chemically recyclable commodity plastics

“White pollution” is a problem of massive scale. To replace the current nondegradable commodity plastics with degradable plastics, a key challenge is that the new raw materials must be readily available at costs comparable to current monomers such as ethylene and propylene. Low-carbon footprint is highly desirable for these raw materials in order to achieve overall environmental sustainability.

Continue reading


Advanced Composite Materials in Extreme Environment

Composite materials are commonly employed in modern aircraft structures and in many aerospace applications like engine casing, fan-blades, etc. This is attributed to their high strength-weight ratio and high stiffness-weight ratio, making composites extremely light, yet exceptionally strong. However, the use of composites makes them susceptible to damage, which could result in complex failure mechanisms like delamination, matrix cracking, fiber debonding, fiber fracture, etc.

Continue reading


Mechanochemistry of a helical metal-ligand complex

Mechanical stress is ubiquitously present in materials and biological systems, and the force-induced bond scission and materials failure have been extensively studied. In recent years, utilizing mechanical force to do targeted and constructive chemistry, largely fueled by the concept of mechanophore, i.e., stress-responsive moiety, has become a new trend.

Continue reading