Graphene, boron nitride, dichalcogenides and other inorganic 2D layered materials (2DLM) have atomically thin structure with unique electrical, mechanical, thermal, and optical properties, and have already been extensively explored for electronics, sensing, catalysis and biomedical applications. On the other hand, in the polymer world, there is an emerging class of 2D polymers with analog structure to 2D layered materials.
Chemistry
Electrochemical sensors for microbial activities in benthic sediments: a sentry for lacustrine P biogeochemistry
Release of phosphate-P immobilized in benthic sediments poses a remnant threat to induce harmful algal blooms (HAB) despite adequate management of external loads of phosphate. This process, referred to as internal loading of P, is induced by microbially mediated alternations of sediment and porewater chemistry and bacteria that “breath” iron are mostly responsible for controlling the release of P from sediments. We have developed an electrochemical split-chamber zero resistance ammetry (SC-ZRA) technique that we can use to detect microbiological activities.
Rheological Dynamics of Liquid Crystals under Thermal Gradients
Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production.
Synthesis and Characterization of (Potentially Novel) Elastomeric Compounds
Our group has recently discovered a material system that potentially may have elastomeric properties. The Internation Union of Pure and Applied Chemistry (IUPAC) defines an elastomer as a polymer that displays rubber-like elasticity, i.e. high viscoelasticity with weak intermolecular forces. We are seeking a highly motivated and ambitious student to assist us in exploring this material system for its potential elastomeric properties and to help us elucidate the rational design of such a material system through characterization of the material properties of various molecular constructs.
Rheological Dynamics of Cellulose Nanocrystal Suspensions under Thermal Gradients
Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production. Translational and orientational motions evolve as a molecular compensation mechanism.
Microfluidic Reactor Design for Helicene Synthesis
Helicenes are polycyclic aromatic compounds which are formed by ortho-fused aromatic rings that generate a non-planar, screw-shaped, three-dimensional structure that is inherently chiral and spring-like. The helical topology significantly contributes to the emergent properties of helicenes and has been garnering interest in the fields of nanotechnology, macromolecular and materials science.
Effect of nano-confinement on the thermodynamics of ionic liquids
Ionic liquids (ILs) are defined as salts that melt at or below 373 K. A typical IL is composed of a bulky organic cation and an inorganic or organic anion. As a group, many ILs tend to be miscible with many organic solvents. They show low vapor pressure, high viscosity and low degree of toxicity. At low temperatures ILs do not crystallize; instead, they form a glassy phase, while at high temperatures they flow with high viscosity, which is due to the strong electrostatic interactions between cations and anions.
Experiment and Computer-Aided Design of Corrosion Inhibitors
This project looks to design new corrosion inhibitors through experimentation and computer-aided design. The undergraduate student will work with a graduate student, assisting them in performing experiments on various systems and in the computer-aided design aspects of the project.
Universal compatibilizers for plastic waste recycling
Plastic waste recycling is plagued by imperfect sorting processes which leaves recycling feeds contaminated with polymers of different molecular composition. These blends have thermodynamic driving forces to phase separate and entropic forces which produce weak interfaces between the materials.
Tunning Fluorescence through Controlling Intramolecular distance between AIE groups within Metal-Organic Cages
Aggregation-induced emission (AIE) has received great attention since AIE makes it possible to actively utilize the aggregation process, which against the well-known aggregation-caused quench (ACQ).