Personal Growth & Methods Lab

The Personal Growth & Methods Lab engages in various projects related to one of three areas: personal growth, international student well-being, and data collection methodology. We are currently recruiting students to assist with projects related to the relationships among gender, empowerment, and personal growth.

Continue reading


Next generation nanocomposites based on 2D polymers and 2D inorganic materials

Graphene, boron nitride, dichalcogenides and other inorganic 2D layered materials (2DLM) have atomically thin structure with unique electrical, mechanical, thermal, and optical properties, and have already been extensively explored for electronics, sensing, catalysis and biomedical applications. On the other hand, in the polymer world, there is an emerging class of 2D polymers with analog structure to 2D layered materials.

Continue reading


Electrochemical sensors for microbial activities in benthic sediments: a sentry for lacustrine P biogeochemistry

Release of phosphate-P immobilized in benthic sediments poses a remnant threat to induce harmful algal blooms (HAB) despite adequate management of external loads of phosphate. This process, referred to as internal loading of P, is induced by microbially mediated alternations of sediment and porewater chemistry and bacteria that “breath” iron are mostly responsible for controlling the release of P from sediments. We have developed an electrochemical split-chamber zero resistance ammetry (SC-ZRA) technique that we can use to detect microbiological activities.

Continue reading


Sedimentation of heavy particles in sheared soft particle glasses

Soft particle glasses (SPGs) are composed of elastic non-Brownian particles that are jammed beyond the packing fraction of equivalent hard spheres. SPGs show solid-like behavior at rest, and they flow when subjected to external stimuli such as shear deformation. Considering this tunable rheological property, they have been used as additives in many products such as cosmetic creams, hair gels, food products, paper coating industries, and recently it has been suggested that these suspensions can be used in the drilling muds.

Continue reading


Promoting Success and Wellbeing at the University of Akron: A Three-Year Repeated Cross-Sectional Study Examining the activities and mental health of students, faculty and staff

This study will collect and analyze data on the experiences of our campus community, focusing on mental health, well-being, and how these affect student’s academic performance and persistence. Online surveys will be conducted in the fall semesters for three years (2019-2021) on a sample of students, faculty and staff. The 2019 student survey has completed. Data are ready for analysis.

Continue reading


Rheological Dynamics of Liquid Crystals under Thermal Gradients

Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production.

Continue reading


Synthesis and Characterization of (Potentially Novel) Elastomeric Compounds

Our group has recently discovered a material system that potentially may have elastomeric properties. The Internation Union of Pure and Applied Chemistry (IUPAC) defines an elastomer as a polymer that displays rubber-like elasticity, i.e. high viscoelasticity with weak intermolecular forces. We are seeking a highly motivated and ambitious student to assist us in exploring this material system for its potential elastomeric properties and to help us elucidate the rational design of such a material system through characterization of the material properties of various molecular constructs.

Continue reading


Productive Uncertainty in a Laboratory Setting (PULSe): Engaging Students with Autism Spectrum Disorders (ASD) in Scientific Research

Peer mentors/research assistants are sought for the PULSe program. Those with ASD have particular modes of thinking and learning that is outside the realm of standard pedagogical practices. In the proper environment, these modes may help those with ASD to flourish. However, they are normally disadvantaged in basic learning environments. Academia is not wholly equipped to instill and help develop the necessary tools for ASD students to effectively function in society. Our aim is to bridge the learning gap.

Continue reading


Rheological Dynamics of Cellulose Nanocrystal Suspensions under Thermal Gradients

Our group has developed a rheological apparatus capable of sustaining spatial thermal gradients in shear rheometry. It is hypothesized that orthogonally superimposed thermal fields will produce linear, field-averaged rheological responses up to a threshold where anomalous, thermo-rheological dissipative phenomena will occur. The molecular influence of heat flow, especially at reduced dimensions, is from entropy production. Translational and orientational motions evolve as a molecular compensation mechanism.

Continue reading


Microfluidic Reactor Design for Helicene Synthesis

Helicenes are polycyclic aromatic compounds which are formed by ortho-fused aromatic rings that generate a non-planar, screw-shaped, three-dimensional structure that is inherently chiral and spring-like. The helical topology significantly contributes to the emergent properties of helicenes and has been garnering interest in the fields of nanotechnology, macromolecular and materials science.

Continue reading


Effect of nano-confinement on the thermodynamics of ionic liquids

Ionic liquids (ILs) are defined as salts that melt at or below 373 K. A typical IL is composed of a bulky organic cation and an inorganic or organic anion. As a group, many ILs tend to be miscible with many organic solvents. They show low vapor pressure, high viscosity and low degree of toxicity. At low temperatures ILs do not crystallize; instead, they form a glassy phase, while at high temperatures they flow with high viscosity, which is due to the strong electrostatic interactions between cations and anions.

Continue reading


Ageism, minority stress

Examining the relationship between benevolent ageism and gender on mental health outcomes in older adults; how minority stress (outness and internalized homophobia) in same-sex couples influences sexual and relationship satisfaction; how to teach about diversity topics at the college level; experiences of discrimination and acculturation in a lifespan sample of Bhutanese refugees.

Continue reading


Design of polyester scaffolds for encapsulation and release of therapeutics

The Joy Lab has developed a platform of polyesters and polyurethanes that are being utilized for the incorporation and sustained delivery of therapeutics. The undergraduate student working on the project will work specifically towards the synthesis of the polymers, incorporation of the therapeutic within the polymer and analyze the release kinetics. The student will gain experience in synthesis and characterization of polymers and in the analysis and interpretation of experimental data.

Continue reading


Microbial Corrosion Monitor

There are over 300,000 miles of natural gas transmission pipeline in the US (Pipeline 101 see web addresses; P&GJ paper 2016). To meet the growing need to transport shale gas in the US, approximately 3,400 miles of new gas pipeline were constructed in 2015-2017 (ferc.gov), and that trend is likely to continue, as the US continues to develop as a major natural gas and petroleum exporter.

Continue reading


Wearable Health Sensors

Our team has developed flexible, lightweight fabric materials that can selectively determine physiological information from sweat forming on the surface of the skin. The technology is the first lightweight fabric sensor to provide real-time information regarding hydration levels during exercise or training through selective determination of sodium ion levels.

Continue reading


To investigate the osmoregulatory conditions of fluids associated with syringomyelia pathology in the PTSM rat model (In vivo study)

What is the osmolality of CSF, extracellular fluid (ECF), fluid from syrinx in syringomyelia/PTSM rats? The fluids mentioned above will be harvested from the rats having syringomyelia, the osmolality of those fluids will be determined using osmometer. The study of osmolality of fluids will explain the potential syrinx formation/expansion mechanism.

Continue reading


Effect of Nanofiber layer patterned stripes on filter performance

Nanofibers have different wetting properties than glass fibers used in common filter media. Recent works with modifying surface properties of filter media shows non-wetting chemical coatings applied in striped patterns can improve performance of coalescing filters. The hypothesis for this work is the nanofibers which enhance wetting properties and droplet capture will similary improve filter performance if applied in striped patterns.

Continue reading


Biomass-based Fillers for Polymers

Pyrolyzed (process of low or no oxygen thermal decomposition –carbonization- to convert biomass into clean and renewable carbon products) biomass obtained from agricultural products such as soybean hulls, sorghum etc., is used as a renewable, low cost and eco-friendly material which has large potential for reinforcement or functionality-inducing (such as electrical, thermal conductivity) filler for polymeric materials.

Continue reading


Photolytically degradable, hydrolytically degradable, and chemically recyclable commodity plastics

“White pollution” is a problem of massive scale. To replace the current nondegradable commodity plastics with degradable plastics, a key challenge is that the new raw materials must be readily available at costs comparable to current monomers such as ethylene and propylene. Low-carbon footprint is highly desirable for these raw materials in order to achieve overall environmental sustainability.

Continue reading


Biomimetic Structures for Impact Protection

The concept of biomimicry is solving problems and creating new opportunities through understanding and applying biological models. Very often, innovation inspired by nature and careful examination of the natural world are potential ways to seek solution to real-world problems. In this project, students will conduct experimental testing and computational analysis at Prof. K.T. Tan’s Advanced Metacomposites Laboratory to investigate the amazing structure of biological models.

Continue reading


Advanced Composite Materials in Extreme Environment

Composite materials are commonly employed in modern aircraft structures and in many aerospace applications like engine casing, fan-blades, etc. This is attributed to their high strength-weight ratio and high stiffness-weight ratio, making composites extremely light, yet exceptionally strong. However, the use of composites makes them susceptible to damage, which could result in complex failure mechanisms like delamination, matrix cracking, fiber debonding, fiber fracture, etc.

Continue reading


Mechanochemistry of a helical metal-ligand complex

Mechanical stress is ubiquitously present in materials and biological systems, and the force-induced bond scission and materials failure have been extensively studied. In recent years, utilizing mechanical force to do targeted and constructive chemistry, largely fueled by the concept of mechanophore, i.e., stress-responsive moiety, has become a new trend.

Continue reading


Lipid modulation of membrane protein properties

In this project the student will conduct experiments to determine how lipid content is coupled to membrane protein function. Cultured cells will be supplemented with different lipid inputs, and the effects on membrane proteins will be measured using quantitative biophysical methods. This project is part of a collaborative research grant focused on neurological pathologies associated with brain lipid composition.

Continue reading